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Modeling serological testing to inform relaxation of
social distancing for COVID-19 control
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Serological testing remains a passive component of the public health response to the COVID-

19 pandemic. Using a transmission model, we examine how serological testing could have

enabled seropositive individuals to increase their relative levels of social interaction while

offsetting transmission risks. We simulate widespread serological testing in New York City,

South Florida, and Washington Puget Sound and assume seropositive individuals partially

restore their social contacts. Compared to no intervention, our model suggests that wide-

spread serological testing starting in late 2020 would have averted approximately 3300

deaths in New York City, 1400 deaths in South Florida and 11,000 deaths in Washington

State by June 2021. In all sites, serological testing blunted subsequent waves of transmission.

Findings demonstrate the potential benefit of widespread serological testing, had it been

implemented in the pre-vaccine era, and remain relevant now amid the potential for emer-

gence of new variants.
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SARS-CoV-2 emerged in China in late 2019 leading to the
COVID-19 pandemic, with over 213 million detected cases
and over 4.4 million deaths globally and approximately 38

million detected cases and 643,000 deaths reported in the U.S. as
of August 24, 20211. Unprecedented social distancing measures
were enacted in early 2020 to reduce transmission and blunt the
epidemic peak. In March 2020, U.S. states began to close schools,
suspend public gatherings, and encourage employees to work
from home if possible. By mid-April, 95% of the U.S.2 and over
30% of the global population were under some form of shelter-in-
place order3. Federal social distancing guidelines expired on April
30, 2020; throughout the summer, many state and local govern-
ments relaxed stay-at-home orders partially or completely4.

Relaxing these social distancing policies resulted in increased
community transmission, and case counts increased as states
further relaxed restrictions on public gatherings, restaurant din-
ing, and operation of businesses5. Behavioral change combined
with the accelerated transmission in a largely immunologically
naïve population resulted in a wave of cases and deaths in the late
summer and early Fall 2020, a second, larger wave in the Fall, and
then a third wave in the Winter of 2020. During late spring 2021,
the widespread availability of SARS-CoV-2 vaccines in the United
States coupled with higher levels of natural immunity allowed
social distancing interventions to be relaxed further. Despite the
widespread availability of vaccines, a fourth wave of cases in the
US beginning in late Summer 2021 is due to multiple factors,
including fatigue from adhering to strict social distancing mea-
sures and heterogeneous vaccine coverage. The rise of more
transmissible variants of concern6,7 as well as the possibility of
variants that escape natural or vaccine-derived immunity8 con-
tinues to require vigilance in the event that COVID-19 incidence
increases again. Indeed, this fourth wave reinforces the need to
evaluate other measures—including individualized policies based
on disease or immune status—as part of integrative response
campaigns9.

In this paper, we explore how immune shielding could be used
to further reduce population risk. A shielding strategy aims to
identify and deploy recovered/vaccinated (and likely immune)
individuals as focal points for sustaining less risky interactions.
This strategy has the objective of sustaining interactions necessary
for the functioning of essential services while reducing the risk of
exposing individuals who remain susceptible to infection. As the
basis for a shielding strategy, widespread serological testing pro-
grams have the potential to identify individuals or groups who are
likely immune, allowing some individuals to return to activities
while keeping deaths and hospital admissions at sufficiently low
levels. In this strategy, individuals who test positive would pre-
ferentially replace susceptible individuals in close-contact inter-
actions, such that more contacts are between susceptible and
immune individuals rather than between susceptible and poten-
tially infectious individuals10. Immune shielding may be parti-
cularly useful given the high incidence in focal regions resulting
from incomplete vaccine coverage and partial levels of population
immunity11.

Serosurveys of SARS-CoV-2 in the U.S. vary in their estimates
of seroprevalence but collectively suggest that infections far out-
number documented cases12–16. To the extent that antibodies
serve as a correlate of immunity, serological testing may be used
to identify protected individuals17. While our understanding of
the immunological response to SARS-CoV-2 infection remains
incomplete, the vast majority of infected individuals
seroconvert18, with detectable antibody levels persisting at least
several months after infection for the majority of individuals19.
SARS-CoV-2 reinfections have been documented but remain
relatively rare (though emerging variants of concern have raised
questions regarding breakthrough infection rates20). Together,

these data suggest that recovered individuals have substantial
protection against subsequent re-infection. Once identified,
antibody test-positive individuals could return to pre-pandemic
levels of social interactions and therefore dilute (via shielding)
potentially risky interactions between susceptible and infectious
individuals10—keeping in mind that variants of concern may
require that other NPIs are still utilized (e.g., masking in indoor
settings).

Such strategies, however, rely on correctly identifying immune
individuals. There are currently more than 50 serological assays
for the detection of SARS-CoV-2 antibodies that have been
authorized for emergency use by the Food and Drug
Administration21. The performance of these tests varies
considerably21–23. For the purpose of informing safe social dis-
tancing policies, specificity rather than sensitivity is of primary
concern. An imperfectly specific test will result in false positives,
leading to individuals being incorrectly classified as immune. If
used as a basis to relax social distancing measures, there is con-
cern that this error could heighten the risk for individuals who
test positive and lead to an increase in community transmission.
For this reason, this paper evaluates the integration of serological
testing into a COVID-19 transmission model to evaluate the level
of serological testing needed to reduce expected fatalities while
increasing the fraction of focal populations who can re-engage in
socio-economic activities.

Results
To evaluate the epidemiological consequences of using mass
serological testing to inform the relaxation of social distancing
measures in the pre-vaccine era, we modeled transmission
dynamics and serological testing for SARS-CoV-2 using a
deterministic, compartmental SEIR-like model (Fig. 1). Recov-
ered, susceptible, latently infected, and asymptomatic persons test
positive at rates that are functions of testing frequency, sensitivity
(for recovered individuals), and specificity (for non-immune
individuals). We model contacts at home, work, school, and other
locations among three age groups: children and young adults (<
20 years), working adults (20–64 years), and elderly (65+ years).
We used a Markov Chain Monte Carlo (MCMC) approach to fit
the model to time series of deaths24 and cross-sectional
seroprevalence16 data from three U.S. metropolitan areas with
distinct COVID-19 epidemic trajectories: the New York City
Metro Region, South Florida, and the Washington Puget Sound
region, including changes in policy impacting social distancing
behaviors, to evaluate an immunological shielding strategy per-
region.

Model fits to fatalities and serological data. We explored the
impacts of social distancing on epidemic outcomes in the absence
of serological testing. To do so, we first used MCMC model-data
integration to fit the model to reported deaths and seroprevalence
point estimates from each of three metropolitan areas. Model fits
reproduced reported death trends reasonably well through June
2020 and seroprevalence estimates early in the outbreak (see
Fig. 2 for fits; Supplementary Figs. 1–10 for full model diag-
nostics). Of note, fits were poorer for New York City, which was
not unexpected due to the unique severity of the initial pandemic
wave there. Fits were moderately good for Washington Puget
Sound and best for South Florida. We note that the probability of
infection per contact had narrow credible intervals (CrI), indi-
cating posterior confidence in the ability of the model to uniquely
identify parameter sets consistent with key features of infection.
Credible intervals were wider for the fraction of infections that
were symptomatic and were widest for social distancing para-
meters, indicating limits of parameter identifiability. Nonetheless,
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the consistency of fits across multiply-independently sampled
chains implies that the model outcomes early in the epidemic are
insensitive to variation in these parameters—enabling us to
evaluate baseline predictions with and without serological testing.

Epidemic dynamics in the absence of serological testing. In all
three sites, our models predicted a second epidemic peak in the
fall and winter of 2020–2021, consistent with the qualitative shape
of the epidemic trajectory (Fig. 3). For New York, the second peak
is predicted to be smaller than the first, whereas the second wave
is expected to be larger than the first wave in Washington and
South Florida. If social distancing was sustained at Fall 2020 levels
without any further interventions, our model predicts that
46–55% of the population across the three metropolitan areas
(55% in New York City, 95% credible interval (CrI): 27–69%; 46%
in South Florida, 95% CrI: 31–60%; and 46% in Washington, 95%
CrI: 2–55%) would be infected with SARS-CoV-2 by June 2021,
resulting in 72,000 cumulative deaths across the three sites
(43,000 deaths in New York City, 95% CrI: 21,000–64,000; 10,000
deaths in South Florida, 95% CrI: 6000–17,000; and 19,000 deaths
in Washington, 95% CrI: 1000–32,000) since the start of the
pandemic (Fig. 4, top row). In reality, the death count for all three
locations was 50,272 (34,492 in New York City, 12,729 in South
Florida, 3051 in Washington)—within the 95% CrI in all cases.

Epidemic dynamics with serological shielding. Next, we retro-
spectively assess the benefit of a serological shielding strategy
implemented in Fall 2020 in each metropolitan area, assuming
that test-positive individuals increase their relative rate of inter-
actions, thereby shielding susceptible individuals and reducing
the risk of transmission. Specifically, individuals who test positive
return to work and increase other contacts to normal levels. We

assume that test-negative and untested individuals continue to
work from home if their job allows them to do so. To reflect the
placement of test-positive individuals in high-contact roles, we
assume that contacts at work and other (non-home, non-school)
locations are preferentially with test-positive persons. When
shielding interactions are 5:1 relative to that of those under social
distancing guidelines, the probability of interacting with a test-
positive individual is five times what would be expected given the
frequency of test-positive individuals in the population, following
the model of fixed shielding described in10. In each site, monthly
serological testing of the population leads to a flattened epidemic
curve in the fall and winter of 2020–2021. Widespread serological
testing combined with moderate serologically-informed shielding
(5:1) starting on November 1, 2020, using a highly specific test,
could have reduced cumulative deaths by June 2021 by 22%
across the three sites combined. The strongest reductions are in
Washington (59%, 95% CrI for deaths averted: 0–17,000), with a
lower relative impact in New York City (8%, 95% CrI for deaths
averted: 300–600) and South Florida (14%, 95% CrI for deaths
averted: 900–1300) (Fig. 4, top row).

Impacts of serological testing frequency on epidemic outcomes
and release from social distancing. Simulations of test-based
interventions reveal that the magnitude of the benefit from ser-
ological shielding depends on the frequency of testing, with more
frequent testing resulting in both larger reductions in deaths and
in a greater proportion of the population being released from
social distancing if a highly specific test is used (Fig. 4, bottom
row). In New York, monthly population testing would have been
needed to maximize the potential benefit, leading to 51% of the
population being released from social distancing by June 1, 2021
(95% CrI: 27–70%) and deaths being reduced by 3000 (95% CrI
for total deaths: 20,000–63,000). In contrast, annual population

Fig. 1 Overall model diagram. Serological antibody testing is shown by dashed arrows. Red dashed arrows indicate either false positives (i.e., someone is
not immune, but is moved to the test-positive group) and occur at a rate that is a function of 1-specificity, or false negatives (i.e., someone is recovered, but
stays in the test-negative group). True positives occur at a rate that is a function of the sensitivity. The hospitalization compartments are located in the
“Not tested/test-negative” layer for simplicity, though individuals who incorrectly test positive could move to these compartments after developing a
symptomatic infection.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26774-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7063 | https://doi.org/10.1038/s41467-021-26774-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


testing would have been expected to release 26% of the population
from social distancing (95% CrI: 13–37%) with 1500 deaths
averted (95% CrI for total deaths: 20,000–64,000). More frequent
testing would have also been beneficial in Washington; monthly
testing would have released 21% of the population from social
distancing (95% CrI: 3–33%) with 11,000 deaths averted (95% CrI
for total deaths: 1000–15,000), compared with only 14% released

(95% CrI: 1–22%) and 4000 deaths averted (95% CrI for total
deaths: 1000–26,000) with annual testing. In South Florida, 41%
(95% CrI: 24–61%) of the population would have been released
from social distancing with monthly testing, compared with 21%
(95% CrI: 12–32%) with yearly testing. Monthly testing would
have averted 1500 deaths in South Florida (95% CrI for deaths:
5000–15,000), whereas annual testing would have averted 500

Fig. 2 The first row shows the consistency between the fitted model and the deaths/seroprevalence data for New York City, South Florida, and
Washington Puget Sound. Daily critical care cases through July 1. The second row shows the cumulative number of recovered (previously infected)
individuals. Red squares show the seroprevalence estimates from Havers et al. in each location16. In the third row, the cumulative deaths are shown, with
death data shown in blue squares24. Data are presented as mean (black line) ±1.96 sd (gray bands), calculated from 100 random samples. Gray bands
show 95% credible intervals, derived from the last 5000 iterations of converged MCMC chains.

Fig. 3 Critical care cases over time by testing level and location assuming 5:1 shielding. Dates corresponding to the start of general social distancing in
March 2020 and lifting at stay-at-home (SAH) orders in May and June 2020, are based on the dates that policies were enacted, or restrictions lifted, in
each location. We assume that schools reopened at 50% capacity on September 1, 2020 in South Florida and October 1, 2020 in Washington and New
York. Dotted lines show the impacts of a test with 90% specificity and solid lines show a test with 99.8% specificity. The 99.8% specificity scenario
represents the accuracy reported among antibody tests currently authorized for use in the U.S., whereas the 90% specificity scenario is meant to capture
reductions in accuracy that might be expected in a mass testing program.
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deaths (95% CrI for deaths: 6000–16,000). While increasing the
intensity of social distancing toward the level of restrictions
observed in April 2020 could help reduce deaths, these same
benefits could be achieved by adding serological testing as part of
a control strategy, allowing social distancing to be safely relaxed.
As social distancing measures are relaxed further, testing fre-
quency should also increase to minimize deaths and maximize the
proportion of the population that can be released (Fig. 5). The
extent to which testing frequency must increase to compensate
for relaxing social distancing varies by location. For example, in
New York City and South Florida, distancing could have been
relaxed fully if monthly testing was employed.

Impacts of serological testing performance and shielding on
epidemic outcomes and release from social distancing. The
value and safety of a serological testing strategy depend on the
level of shielding and test specificity. Thus far, our results cen-
tered on dynamics enabled by a high-performance test with a
specificity of 99.8%, consistent with the high end of the range of
reported specificity of available antibody tests21. We also explored
the impact of employing a suboptimal test with 90% specificity,
consistent with the lower range of approved tests plus additional
decreases in accuracy due to rolling out testing at mass scale.
Under this scenario, cumulative deaths across the three locations
(66,000) would have been lower than if no-testing strategy was
implemented (72,000) but higher than if using a high-
performance test (56,000), with 93–99% of the population
released from social distancing (New York: 99%, 95% CrI:
95–99%; South Florida: 98%, 95% CrI: 97–100%; Washington:
93%, 95% CrI: 73–97%). However, if monthly testing with a
suboptimal assay (90% specificity) was implemented without

shielding, 97–99% of the population would have been released
from social distancing (99% in New York City, 95% CrI: 95–99%;
98% in South Florida, 95% CrI: 97–100%; and 97% in
Washington, 95% CrI: 73–99%) and 78,000 deaths would be
expected, more than if no testing were implemented. Overall,
adding shielding to a monthly testing strategy results in 10–27%
fewer deaths compared to testing at the same frequency without
shielding (10% in New York; 14% in South Florida; 27% in
Washington). We also set test specificity to 50% to represent a
scenario in which antibodies are not a reliable correlate of
immunity (i.e., the test is poor at distinguishing between immune
and non-immune individuals). If antibodies are not a reliable
correlate of protection (which would be counter to current evi-
dence that shows neutralizing antibodies persist for months25)
then serological testing could lead to more deaths than if not used
at all (Fig. 4, top panel). We conclude that shielding strategies
avert deaths with any level of social distancing even when using a
moderately specific test (90%) so long as antibodies provide a
reasonably good correlate of protection (Fig. 5).

As a sensitivity analysis, we also explored how uncertainty in
the natural history parameters (latent period, relative transmis-
sibility of asymptomatic infections, hospital length of stay, and
duration of symptomatic and asymptomatic infection) altered the
impact of testing and shielding. In general, if asymptomatic cases
are more able to transmit than we have assumed in our main
model, the impact of shielding would be enhanced. In contrast,
faster recovery rates for both symptomatic and asymptomatic
cases could decrease the ultimate impact of shielding, particularly
in South Florida and Washington, where the initial epidemic
wave was relatively mild. Changing the latent period and the
duration of hospitalization had minimal impact on the results
(Supplementary Figs. 12–14).

Fig. 4 Cumulative deaths and number released from social distancing. The top row shows cumulative deaths by location (panels) by daily testing rate
from March 2020 to February 2021 for the scenario with 5:1 shielding, with schools reopening on September 1, 2020 in South Florida and October 1, 2020
in Washington and New York. Colored lines show test specificity. The gray horizontal line shows the number of deaths in the no-testing scenario for each
location. The bottom row shows the fraction of the population of each metropolitan area released from social distancing by June 1, 2021, assuming
5:1 shielding. Line colors correspond to testing levels; blue is monthly testing (10 million tests/day) of the U.S. population. Dashed lines show expected
results with a highly specific test (specificity= 99.8%) and solid lines show expected results with a test with 90% specificity. The 99.8% specificity
scenario represents the accuracy reported among antibody tests currently authorized for use in the U.S., whereas the 90% specificity scenario is meant to
capture reductions in accuracy that might result from the implementation of a mass testing program. The 50% specificity level represents a scenario in
which an antibody test cannot distinguish between immune and non-immune individuals.
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Fig. 5 Cumulative deaths and number released from distancing by testing level and contact reductions. Contour plot of cumulative deaths in each
location from November 1, 2020 to June 1, 2021 (left column) and the number of people released from social distancing (right column) as a function of the
degree of relaxation of social distancing and number of tests per day. The far right of the x-axis corresponds to a pre-pandemic level of contact and the far
left corresponds to the contact levels in each location during stay-at-home orders in March–June 2020. Both panels assume a test specificity of 99.8% and
a shielding factor of 5:1.
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Discussion
After achieving reasonably good fits of the model to historical
data, our simulation study reveals that sufficiently frequent test-
ing using high-performance tests combined with serological
shielding in the pre-vaccine era would have decreased deaths and
allowed relaxed social distancing for a substantial fraction of the
population. First, we found that maintaining moderate social
distancing equivalent to levels in Fall 2021, together with monthly
serological testing, could have relieved 21–51% of several U.S.
metropolitan populations from social distancing by June 2021.
Second, if moderate shielding was employed, a strategy with
serological testing would have resulted in up to 16,000 fewer
deaths than a strategy without testing in the three focal areas.
Adding shielding alongside monthly testing could have further
reduced mortality rates and allowed a substantial fraction of the
population to return to work and other activities with relative
safety without the social and economic costs of strict, prolonged
social distancing measures26. Third, we find that such a strategy
could in fact prove dangerous, resulting in more deaths, if the
serology test is non-specific or if antibodies are not a reliable
indicator of immunity. Vaccine passports are already in place in
some countries to identify individuals with immunity due to
vaccination or recent history of infection27. While our models
were fit to data before COVID-19 vaccines were widely available,
the principle of serological shielding may still prove useful. For
example, serological testing could be used to complement vacci-
nation status, identifying more individuals with immunity for
whom social distancing could be more safely relaxed.

An aggressive, monthly testing approach is unprecedented but,
we argue, may be feasible and warranted under certain scenarios
considering the continued social and economic impact of the
epidemic. Implementation would require a significant and rapid
scale-up of serological testing capacity. In the U.S., this scale-up
was achieved for diagnostic PCR testing; the U.S. expanded
testing from fewer than 1000 tests per day in early March to
nearly 250,000 tests per day in mid-May and about 1 million
per day by September. Moreover, recently developed serological
tests are quicker to perform than RT-PCR28,29. New York City
reported performing a peak of 187,000 tests per week in late
March 202030, which corresponds to a rate between the yearly
testing and 10% per year testing scenarios we consider in our
analysis and could likely be increased with a concerted focus on
antibody testing. Highly specific, self-administered bloodspot
assays, as well as saliva-based tests31,32, could ease some of the
logistical challenges of large-scale testing.

Still, there is a legitimate concern that serological tests to relax
social distancing could increase population risk33. To the con-
trary, we show that coupling serological testing using available
diagnostic tests with immune shielding can form the basis of a
successful risk mitigation strategy. If testing employs the most
specific assays available, the false positive proportion would
remain low and decrease over time as seroprevalence increases. If
test specificity is closer to 90%, the false positive rate could have
reached 50% in all sites while remaining lower than the pre-
valence of positives in the untested population. As such,
deploying immune individuals such that they are responsible for
more interactions than susceptible individuals will reduce risk. If
shielding is not employed, this benefit disappears, and testing can
become a liability—reinforcing the critical need to combine ser-
ological testing with a shielding strategy. Importantly, false
positives are unlikely to substantively impact population-level risk
at levels of specificity reported by most authorized serological
tests21,34.

In this modeling study, there are a number of assumptions and
limitations that should be considered. First, while the credible
intervals of cumulative mortality from our models overlap with

realized outcomes, there remains considerable uncertainty
regarding the extent to which individuals continued to practice
social distancing through mid-2021, which is a key parameter in
our models. This underscores the challenges of predicting the
trajectory of the epidemic amidst uncertainty about shifting
behavioral patterns. Social distancing was broadly adopted in the
initial response in the United States35 but quantifying ever-
evolving patterns of social mixing is challenging and little
empirical data on behavioral patterns starting in March 2020 is
available. Nevertheless, modeling the impact of changing contact
patterns on disease transmission is a critical aspect of our model.

Second, our models assumed random allocation of serological
testing. In practice, targeting testing to specific groups, such as
healthcare workers, nursing home care providers, food service
employees, or contacts of confirmed or suspected cases might
increase efficiency by increasing the test-positive rate (and con-
sequently, cost-effectiveness36), allowing for similar numbers of
individuals to be released from social distancing at lower testing
levels. This strategy would also decrease the false positive rate, an
important consideration if a less specific test is used37. Many
healthcare organizations have already begun to offer antibody
testing to their employees38. The use of serological testing and
shielding within healthcare settings represents a smaller-scale,
more targeted application of a testing and shielding strategy39.

Third, we have made three critical simplifying assumptions in
our model. We assume that antibodies are immediately detectable
after resolution of infection. In reality, this generally occurs
between 11 and 14 days post infection40. A small fraction of
recent infections would be undetected, but this would likely have
a minor effect on our results. Next, we assume that immunity
lasts for the duration of our simulations, or at least 15 months.
Both the duration of antibody protection and the extent to which
those antibodies protect against future infections remains unclear.
However, the vast majority of individuals who are infected
seroconvert18, and ongoing studies of SARS-CoV-2 show that
antibodies persist for at least months40. Even as antibodies wane,
this does not necessarily imply the loss of immune protection41.
Ongoing studies are needed to determine whether these same
patterns hold true for newly emerging variants. In addition, we
assume that antibodies detected by serology are a correlate of
protection. While antibody levels have been shown to wane after
several months42,43, especially for individuals with mild
infection25,41, protection following natural infection remains
substantial44, even when antibodies may be undetectable. Finally,
we assume that serology data from Havers et al.16 are repre-
sentative of the metropolitan areas in which the studies were
conducted. In reality, convenience sampling was used in each
location, taking advantage of medical visits for other reasons.
While these numbers might be biased, the direction of this
potential bias is unclear and Havers et al. remains the best ser-
ological data available at the time of writing. We also assume that
the age-specific case fatality rates are constant over time45. If the
actual fatality rate declines over time, this may have led us to
overestimate the number of deaths.

Even if testing can be scaled up, legal and ethical concerns
remain. Requiring evidence of a positive test to return to activities
may create strong incentives for individuals to misrepresent their
immune status or intentionally infect themselves. However, this is
less of a concern amid the widespread availability of vaccines.
Nonetheless, a mass testing program must consider how such
policies might enforce existing social disparities and guard against
inequities in test availability46,47. Moreover, attention must be
paid to the potential risk posed by re-infection, which is especially
of concern with new variants.

We have focused our analysis on serological testing, using the
principles of serological shielding to reduce risk of infection for
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susceptible individuals, but this principle also applies to
vaccination48. As of July 2021, three vaccines against SARS-CoV-
2 are widely available throughout the United States49 and over
68% of U.S. adults have received at least one dose of vaccine7.
However, vaccination uptake varies geographically. In the United
States, if a rebound in transmission occurs among unvaccinated
individuals as variants of concern begin to become more wide-
spread, vaccinated individuals and/or seropositive individuals
could also be preferentially placed in high-contact positions to
serve as immune “shields”. This could allow transmission to be
more controlled, even as social distancing interventions continue
to be relaxed. If a novel strain emerges that escapes vaccine-
derived and natural immunity, additional testing could identify
individuals who have immunity against the escape variant for
shielding to be a viable strategy. This strategy might be particu-
larly beneficial in high-risk settings, such as healthcare or long-
term care facilities.

A serological testing strategy could be one component of the
continued public health response to COVID-19, alongside vac-
cination, viral testing, masking and contact tracing. Our results
show that serological testing coupled with shielding could have
mitigated the impacts of the COVID-19 pandemic while also
allowing a substantial number of individuals to safely return to
social interactions and economic activity, suggesting a future role
for serological testing in the ongoing public health response to
COVID-19 amid low vaccination coverage and the continuing
threat of emergent SARS-CoV-2 variants.

Methods
We modeled the transmission dynamics of SARS-CoV-2 using a deterministic,
compartmental SEIR-like model (Fig. 1). We assume that after a latent period,
infected individuals progress to either asymptomatic or symptomatic infection. A
fraction of symptomatic cases are hospitalized, with a subset of those requiring
critical care. Surviving cases, both asymptomatic and symptomatic, recover and are
assumed to be immune to re-infection. All individuals who have not tested positive
and are not currently experiencing symptoms of respiratory illness are eligible to be
tested and all hospitalized cases are tested prior to discharge. Recovered individuals
are moved to the test-positive group at a rate that is a function of test sensitivity.
Susceptible, latently infected, and asymptomatic cases may falsely test positive and
are moved to the test-positive group at a rate that is a function of test specificity.
False positives may become infected, but the inaccuracy of their test result is not
recognized unless they develop symptoms that are sufficiently severe to warrant
hospitalization and health providers correctly diagnose COVID-19, overriding the
history of a positive antibody test. The ordinary differential equations corre-
sponding to this model are included in section SI Appendix, Section S1. All models
were run in R (version 3.6.2) using the package deSolve. Translations of the
baseline model are available in Matlab and Python. Fitting, estimation, and
visualization of fits were implemented in MatLab R2019a and Python version 3.7.3.
Code is available at https://github.com/lopmanlab/Serological_Shielding.

There are three age groups represented in the model: children and young adults
(<20 years), working adults (20–64 years), and elderly (65+ years). We modeled
age-specific mixing based on POLYMOD data adapted to the population structure
in the United States50,51. Contacts in this survey were reported based on whether
they occurred at home, school, work, or another location. All baseline social
contact matrices were based on Prem et al.51 and calculated to be symmetric using
the symmetric = TRUE option when calling the contact_matrix function in the
socialmixr R package (version 0.1.6).

General social distancing began on the day that stay-at-home orders were
enacted in each location. Although adherence to these measures varied and is
generally difficult to measure, we made several assumptions about how these
policies changed location-specific contacts. First, we assume that under these
measures, all contacts at school were eliminated and that contacts outside of home,
work, and school (other) locations were reduced by a fraction, which was fitted for
each location. We assume that contacts at home remained unchanged. To address
differences in work-based contacts by occupation types, we classified the working
adult population into three subgroups based on occupation: (i) those with occu-
pations that enable them to work exclusively from home during social distancing,
(ii) those continuing to work but reduced their contacts at work (e.g., customer-
facing occupations such as retail), and (iii) those continuing to work with no
change in their contact patterns (e.g., frontline healthcare workers). The percent
reduction in other contacts and percent contact reductions at work for essential
workers who could reduce their contacts was fitted (see next section).

This period of intense social distancing lasts until stay-at-home orders are lifted
in each location. All three municipalities enacted social distancing regulations in

mid-March 202052–54. Under these measures, we assume all contacts at school were
eliminated and contacts outside of home, work, and school (other) locations were
substantially reduced55 while contacts at home remained unchanged, with dis-
tancing starting at the time that stay-at-home orders were enacted in each site.
After reopening begins, we assume that schools remain closed but that social
distancing measures for the general population can be relaxed, by allowing work
and other contacts to be increased. In accordance with school reopening policies in
each location, we assume that schools remained closed until September 1, 2020 in
South Florida and October 1, 2020 in Washington and New York. To represent
general relaxation of social distancing, we scale contacts at work and other loca-
tions to a proportion of their value under general social distancing based on a
scalar constant, c, such that c= 1 is equivalent to the scenario in which social
distancing measures as put into place in March are maintained and c= 0 is
equivalent to a return to pre-pandemic contact levels for both work and other
contacts for essential workers and pre-pandemic contact levels for other contacts
for all other groups. Based on local policies, we assume that children returned to
school on September 1, 2020 in South Florida and October 1, 2020 in Washington
and New York City. To account for the fact that schools have taken a variety of
measures to reduce contact among students, we assumed that children halved
(50%) their pre-pandemic contacts at school.

Nonlinear model-data fitting. We fit the model for each location to deaths
reported due to COVID-19 from March to July 202024 as well as seroprevalence
data16 using a Markov Chain Monte Carlo (MCMC) approach56,57 using the
MCMCstat toolbox (https://mjlaine.github.io/mcmcstat/)58,59. Each location was
defined using the same counties as were included in a CDC-led seroprevalence
study16. For each location, we estimated the six parameters listed in SI Appendix.
Model parameter values are shown in SI Appendix, Tables S1 and S2. Reductions
in social contacts corresponding to these fitted parameter values are shown in SI
Appendix, Table S3. We first performed Latin Hypercube Sampling to generate
random parameter sets. Using each set, we ran initial fits and started our MCMC
runs from the ten first sets associated with the minimum errors. We ran these ten
randomly seeded chains for 100,000 iterations each (95,000 burn-in; 5,000 sam-
ples). To infer the initial conditions, we first calculated the number of weeks
between the first reported death in each location and the first week where the
cumulative death toll exceeded 10. Using region-specific conditions (population
demographics, stay-at-home order enactment and lifting dates, and death data), we
initialize an epidemic consisting of a single exposed adult, forward simulated until a
death count threshold was met, and then the population distribution was used as
the initial condition for subsequent intervention scenarios.

We used a Poisson likelihood function that included penalty terms for the
cumulative midpoint and final number of deaths in each location, the weekly death
rates, and population-level seroprevalence estimated for each location from Havers
et al.16. We estimated chain convergence using the Gelman–Rubin diagnostic
(Supplementary Fig 1). Supplementary Figs. 2, 5, and 8 show the trace plots for
each model, and Supplementary Figs. 3, 6, and 9 show the resulting joint
distributions of estimated parameters. The consistency between the fitted model
and death/seroprevalence data for each location is shown in Supplementary Figs. 4,
7, and 10. After fitting to death data spanning March to July 2020, we use fitted
parameters to forward-simulate the epidemic through June 1, 2021 in each
location.

Given that all ten site-specific chains converged to similar values for each
location (indicating good and consistent model fits), we randomly sampled 20
parameter sets in the final 5000 interations in each site for each location to capture
uncertainty in model predictions. This resulted in 200 randomly sampled
parameter sets for each site. We simulated the epidemic forward using each
parameter set for the key testing and shielding interventions we report in the text.
We report the middle 95% of the distribution of outcomes from these runs as our
credible intervals. As only the fitted parameters were varied, the resulting
uncertainty intervals only capture uncertainty in the fitted parameters and not in
parameters that were fixed from prior literature. If all parameters had been varied,
our credible intervals would likely have been wider. We have uploaded a
supplementary file with the number of deaths, critical care cases, cumulative
incidence, and the fraction of the population released from social distancing after
one year from each of these simulations as Supplementary Material. More details
regarding model fitting are shown in SI Appendix Sect. S3.

Sensitivity analysis of fixed parameters using partial-rank correlation coef-
ficients. To capture the potential influence of uncertainty in fixed parameters on
the impact of shielding, we used Latin Hypercube Sampling to generate 300 ran-
dom parameter sets based on probable ranges for each parameter, assuming a
uniform distribution within each range60. We varied the duration of the latent
period from 3 to 12 days61,62, the relative transmissibility of asymptomatic infec-
tion (compared to symptomatic infection) from 25 to 100%63–66, the recovery for
non-hospitalized, symptomatic cases from 1 to 10 days67,68 and for asymptomatic
cases from 3 to 8 days69, and the length of hospitalization from for severe cases
from 6 to 20 days and for non-severe cases from 3 to 9 days70,71. We sampled
parameters separately from each distribution and simulated our main shielding
scenarios for each. For each parameter, we calculated the partial-rank correlation
coefficient between the value of the parameter and the number of deaths in the
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simulation run with that parameter value. This provides a measure of the effect of
the value of each fixed parameter on the impact of shielding in our models.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Death data used for model calibration are available from https://usafacts.org/
visualizations/coronavirus-covid-19-spread-map/ and policy data that was used to define
the reopening policies by the site are available at https://github.com/nytimes/covid-19-
data. Seroprevalence data was previously published by Havers et al.16. All data used
directly in model fitting are available in the Github repository, specifically at https://
github.com/lopmanlab/Serological_Shielding/MCMC_CODE/Matlab/INPUTS.

Code availability
Code is available at https://github.com/lopmanlab/Serological_Shielding72.
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